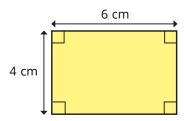

Area and perimeter

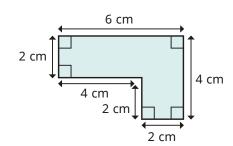
1 Use the cards to complete the sentences.

_____ is the amount of space _____

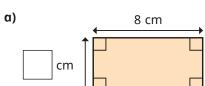
a two-dimensional shape. It can be measured in units such as

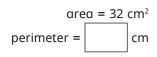

_____ or ____

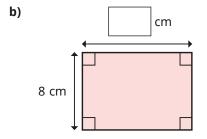
_____ is the distance _____ a two-dimensional

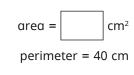

shape. It can be measured in units such as _____ or ____

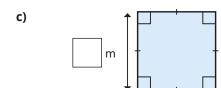
2 Work out the areas and perimeters of the shapes.

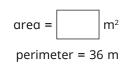

a)

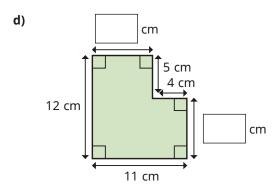


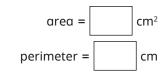

b)



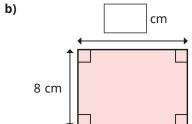

3 Work out the missing values.



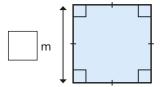




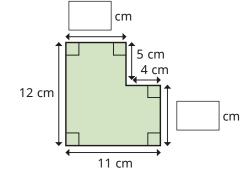
Area and perimeter



Work out the missing values.



$$area = 32 cm^2$$
perimeter = cm

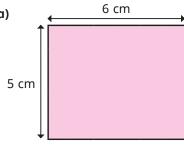

area =
$$cm^2$$

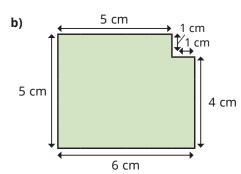
perimeter = 40 cm

c)

area =
$$m^2$$
 m² perimeter = 36 m

d)




$$area = \boxed{ cm^2}$$

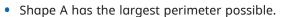
$$perimeter = \boxed{ cm}$$

Work out the areas and perimeters of the shapes.

a)

What do you notice?

Draw two rectilinear shapes that have the same perimeter but a different area.



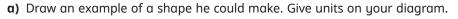
How did you do it?

Talk about it with a partner.

Two rectilinear shapes, A and B, each have an area of 12 cm^2

• Shape B has the smallest perimeter possible.

Draw shapes A and B.


What do you notice?

Mr Jones has 50 m of fencing.

Each side of the enclosure must be a whole number of metres.

- **b)** What is the greatest possible area of the enclosure?
- c) What is the smallest possible area of the enclosure?

