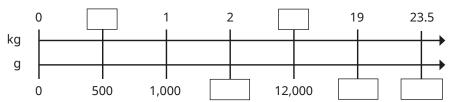
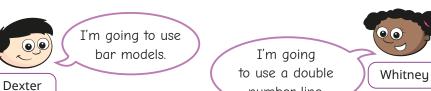
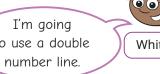
Kilograms and kilometres

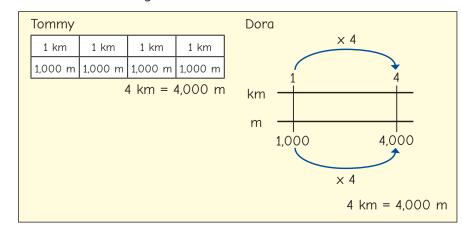

The bar model shows that 1 kg is equal to 1,000 g. Use the bar models to complete the conversions.

1 kg 1,000 g


a) 1 kg 1 kg 1 kg


- b) 1 kg 1 kg 1 kg 1 kg 1 kg
- 5 kg =g
- c) 1,000 g 1,000 g 1,000 g 1,000 g
- kg = 4,000 g
- Find the missing values to convert between kilograms and grams.

Dexter and Whitney are converting 27.5 kg into grams.



- a) Whose method is more efficient? Explain your answer.
- **b)** Work out the conversion.

Tommy and Dora are converting 4 km into metres.

Here are their workings.

Whose method do you prefer? Explain your answer.

Complete the conversions.

g)
$$g = 0.1 \text{ kg}$$

Complete the conversions.

$$\frac{1}{4}$$
 kg = g

$$\frac{3}{4}$$
 kg = g

b)
$$\frac{1}{10}$$
 km = $\frac{1}{5}$ km = $\frac{3}{10}$ km =

$$\frac{1}{5}$$
 km =

$$\frac{3}{10}$$
 km = _____ m

c)
$$\frac{3}{6}$$
 kg = g

$$\frac{12}{24} \text{ kg} = \boxed{\qquad} \text{g} \qquad \frac{99}{198} \text{ kg} = \boxed{\qquad}$$

d)
$$\frac{20}{20}$$
 km = $\frac{1}{20}$ km = $\frac{19}{20}$ km =

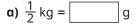
$$\frac{1}{20}$$
 km = $\boxed{}$ m

Kilograms and kilometres

Tommy and Dora are converting 4 km into metres.

Here are their workings.

Tommy				Dora
1 km	1 km	1 km	1 km	× 4
1,000 m	1,000 m	1,000 m	1,000 m	1
	2	4 km = 4	4,000 m	km m 1,000 4,000 × 4 4 km = 4,000 m


Whose method do you prefer? Explain your answer.

Complete the conversions.

f)
$$g = 41.2 \text{ kg}$$

Complete the conversions.

$$\frac{1}{4}$$
 kg = $\boxed{}$ g

$$\frac{3}{4}$$
 kg = g

b)
$$\frac{1}{10}$$
 km =

$$m = \frac{1}{5} \text{ km} = \frac{1}{5} \text{ m}$$

$$\frac{3}{10}$$
 km = _____ m

c)
$$\frac{3}{6}$$
 kg =

$$\frac{12}{24}$$
 kg =

$$\frac{99}{198}$$
 kg =

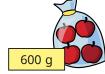
d)
$$\frac{20}{20}$$
 km = _____ m

$$m \frac{1}{20} \text{ km} = \boxed{ }$$

$$m = \frac{19}{20} \text{ km} = \frac{19}{100} \text{ km}$$

Write <, > or = to compare the measurements.

0.5 km 600 m


3,200 g


5,000 g + 2 kg 5.5 kg + 1,500 g

d)
$$\frac{7}{10}$$
 km + $\frac{3}{10}$ km + 965 m

The mass of a bag of apples is 600 g. What is the mass of 8 bags of these apples? Give your answer in kilograms.

Ron buys 3.8 kg of potatoes and 1,250 g of carrots.

He pays with a £20 note.

How much change does he get?

Dora runs 200 m in 32 seconds.

If she runs at the same speed, how long will it take her to run 5 km? Is Dora likely to be able to keep up this speed?

