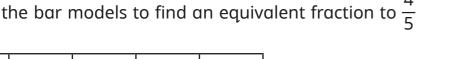
Find fractions equivalent to a non-unit fraction

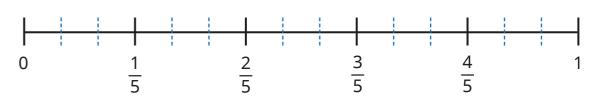
Use the bar models to find the equivalent fractions.


- a)
- b)

$$\frac{2}{5} =$$

c) Shade the bar models to find an equivalent fraction to $\frac{2}{3}$

- d) Shade the bar models to find an equivalent fraction to $\frac{4}{5}$

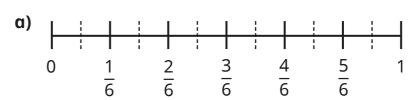

	ï	i	ï		\Box		i		ï	ï	i			 	i	\Box	Π	T	ī
1	1	ı	1				1	ı	1	ı	1	ı	1	ı	ı	ı	1	1	1
1	1	1	1				1	ı	1	1	1	ı	ı	ı	1	ı	1	1	1
1	1	ı	1		1	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1
1		1	1	'				I			1	l			ı				1
	_	_	_		_	_	_	_		_	_		_	_	_		_	_	

$$\frac{4}{5}$$
 =

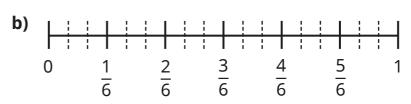
Whitney is finding equivalent fractions using a number line.

I can find equivalent fractions by splitting the number line into smaller parts.

Use Whitney's number line to complete the equivalent fractions.

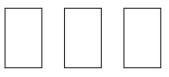

a)
$$\frac{1}{5} = \frac{15}{15}$$

c)
$$\frac{3}{5} = \frac{15}{15}$$

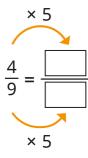

b)
$$\frac{2}{5} = \frac{15}{15}$$

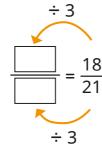
d)
$$\frac{4}{5} = \frac{15}{15}$$

Use the number lines to complete the equivalent fractions.


$$\frac{5}{6}$$
 =

$$\frac{5}{6}$$
 =


Find three fractions that are equivalent to $\frac{4}{7}$



Complete the equivalent fractions.

a)

b)

Complete the equivalent fractions.

a)
$$\frac{3}{4} = \frac{6}{1}$$

d)
$$\frac{3}{7} = \frac{}{49}$$

a)
$$\frac{3}{4} = \frac{6}{100}$$
 d) $\frac{3}{7} = \frac{1}{49}$ g) $\frac{2}{100} = \frac{6}{30}$

b)
$$\frac{4}{5} = \frac{12}{}$$

e)
$$\frac{7}{9} = \frac{21}{1}$$

b)
$$\frac{4}{5} = \frac{12}{\boxed{}}$$
 e) $\frac{7}{9} = \frac{21}{\boxed{}}$ **h)** $\frac{7}{12} = \frac{\boxed{}}{\boxed{}}$

c)
$$\frac{5}{8} = \frac{48}{48}$$

f)
$$\frac{2}{18} = \frac{6}{18}$$

c)
$$\frac{5}{8} = \frac{\boxed{}}{48}$$
 f) $\frac{2}{\boxed{}} = \frac{6}{18}$ i) $\frac{5}{\boxed{}} = \frac{500}{800}$

Tiny is using this rule to find fractions that are equivalent to $\frac{8}{12}$

Whatever I do to the numerator, I have to do to the denominator.

 $\frac{10}{14}$

Circle the fractions that are equivalent to $\frac{8}{12}$ What mistakes has Tiny made?

Here are some equivalent fractions.

Find the values of A, B and C.

<u>A</u>

Here are three fraction cards.

All the fractions are equivalent.

A + B = 13

Work out the value of C.

$$\frac{3}{5} = \frac{9}{1+0}$$

Find the value of

